Radical Stability

Hendrik Zipse

Department of Chemistry LMU München, Germany

2020

Radical Stability - Some Terminology

Radical Stability - Some Terminology

Radical Stability - Some Definitions

^[a] ATcT database, 1.122p (2020)

Radical Stability - Some Definitions

Radical Stability - Some Definitions

^[a] ATcT database, 1.122p (2020)

Mechanisms of Radical Stabilization I

- Inductive Effects -

Mechanisms of Radical Stabilization II

- Resonance Stabilization -

Resonance Stabilization

VB Theory

MO Theory

Mechanisms of Radical Stabilization III

- Lone Pair Donors -

ΔH₂₉₈(G3(MP2)-RAD) [kJ/mol]

Lone-Pair Stabilization

Multiple Substituents - Saturation

Multiple Substituents – Saturation II

The Triphenylmethyl Radical

M. Gomberg, "Triphenylmethyl, ein Fall von dreiwerthigem Kohlenstoff", *Ber. Dt. Chem. Ges.* **1900**, *33*, 3150.

J. M. McBride, "The Hexaphenylethane Riddle", *Tetrahedron* 1974, 30, 2009.

<u>Multiple Substitution – Synergistic Effects</u>

ΔH₂₉₈(G3(MP2)-RAD) [kJ/mol]

The Interpretation of Radical Stability

The Anomeric Effect

<u>Stability of σ -Radicals</u>

ΔH₂₉₈(G3(MP2)-RAD) [kJ/mol]

σ -Radicals vs. π -Radicals

The Stability of Carbon-Centered Radicals

•CH₃ + R-H
$$\xrightarrow{\Delta H_{rxn}}$$
 CH₄ + R•
•CH₃ + CH₃CH₃ $\xrightarrow{\Delta H_{exp}=}$ CH₄ + CH₃CH₂•

•NH₂ + R₂N-H
$$\longrightarrow$$
 H₃N + R₂N•
•NH₂ + CH₃NH₂ $\xrightarrow{\Delta H_{exp} =}$ H₃N + CH₃NH•

^[a] ATcT database, 1.122p (2020)

The Stability of Nitrogen-Centered Radicals

DPPH - A Persistent Nitrogen-Centered Radical

1,1-Diphenyl-2-picrylhydrazyl (DPPH)

- stable solid with mp = 130 °C
 - EPR standard at g = 2.0036
 - radical trap

The Stability of Carbon-Centered Radicals

The Stability of Sulfur-Centered Radicals

ΔH₂₉₈(G3(MP2)-RAD) [kJ/mol]

The Stability of Carbon-Centered Radicals

•CH₃ + R-H
$$\xrightarrow{\Delta H_{rxn}}$$
 CH₄ + R•
•CH₃ + CH₃CH₃ $\xrightarrow{\Delta H_{exp}=}$ CH₄ + CH₃CH₂•

•OH + RO-H
$$\xrightarrow{\Delta H_{rxn}}$$
 H₂O + RO•
•OH + CH₃OH $\xrightarrow{\Delta H_{exp}=}$ H₂O + CH₃O•

^[a] ATcT database, 1.122p (2020)

The Stability of Oxygen-Centered Radicals

ΔH₂₉₈(G3B3-D3) [kJ/mol]

TEMPO - A Persistent Oxygen-Centered Radical

(2,2,6,6-Tetramethylpiperidin-1-yl)oxyl (TEMPO)

- stable solid with $mp = 36 \circ C$
- mediator for living radical polymerization
 - radical trap
 - catalyst for oxidation reactions

Calculating Bond Dissociation Energies (BDE)

 $BDE(R-H) = BDE(CH_3-H) + RSE(R\bullet)$

BDE(Gly-H) = +439.0 -75.5 = +363.5 kJ/mol

Calculating Hydrogen-Transfer Reaction Energies

•
$$R_1 + R_2$$
- $H \xrightarrow{\Delta H_{rxn}} R_1$ - $H + R_2$ •
 $\Delta H_{rxn} = BDE(R_2-H) - BDE(R_1-H)$

 $\Delta H_{rxn} = BDE((CH_3O)(CH_3)_2C-H) - BDE(Ph-H)$

Calculating Hydrogen-Transfer Reaction Energies

Calculating Hydrogen-Transfer Reaction Energies

•
$$R_1 + R_2$$
- $H \xrightarrow{\Delta H_{rxn}} R_1$ - $H + R_2$ •
 $\Delta H_{rxn} = BDE(R_2-H) - BDE(R_1-H)$

Protecting Group/Radical Translocating (PRT) Reactions

D. P. Curran et al., J. Am. Chem. Soc. 1988, 110, 5900.

Matching Radical-Stability Scales

 $[\]Delta H_{298}(G3(MP2)-RAD) [kJ/mol]$

Protecting Group/Radical Translocating (PRT) Reactions

D. P. Curran et al., J. Am. Chem. Soc. 1988, 110, 5900.

Matching Radical-Stability Scales

 $[\]Delta H_{298}(G3(MP2)-RAD) [kJ/mol]$

Protecting Group/Radical Translocating (PRT) Reactions

D. P. Curran et al., J. Am. Chem. Soc. 1988, 110, 5900.

Protecting Group/Radical Translocating (PRT) Reactions

D. P. Curran et al., J. Am. Chem. Soc. 1988, 110, 5900.

Matching Radical-Stability Scales

 $[\]Delta H_{298}(G3(MP2)-RAD) [kJ/mol]$

Protecting Group/Radical Translocating (PRT) Reactions

D. P. Curran et al., J. Am. Chem. Soc. 1988, 110, 5900.

Radical Stability – Literature Data

•CH₃ + R-H
$$\longrightarrow$$
 CH₄ + R•

M. L. Coote, C. Y. Lin, H. Zipse, p. 83 - 104, in M. D. E. Forbes (Ed.), *Carbon-Centered Free Radicals and Radicals Cations*, John Wiley & Sons, **2010**.

J. Hioe, H. Zipse, Faraday Disc. 2010, 145, 301.

J. Hioe, H. Zipse, Org. Biomol. Chem. 2010, 8, 3609.

J. Hioe, A. Karton, J. M. L. Martin, H. Zipse, *Chem. Eur. J.* **2010**, *16*, 6861. Corrigendum: *Chem. Eur. J.* **2010**, *16*, 6722.

J. Hioe, G. Savasci, H. Zipse, Chem. Eur. J. 2011, 17, 3781.

J. Hioe, H. Zipse, p. 449 – 476 in *Encyclopedia of Radicals in Chemistry*, *Biology and Materials*, C. Chatgilialoglu, A. Studer (eds.), Wiley & Sons, **2012**.

Y.-R. Luo, Comprehensive Handbook of Chemical Bond Energies, CRC Press, 2007.