Gaussian Output Files
he first part of the Gaussian output file states in considerable detail the contents of the license agreement. This should be taken seriously. Gaussian 03 is no public domain software!!
Entering Gaussian System, Link 0=/scr1/g03/g03 Initial command: /scr1/g03/l1.exe /scr1/zipse/Gau-26301.inp -scrdir=/scr1/zipse/ Entering Link 1 = /scr1/g03/l1.exe PID= 26302. Copyright (c) 1988,1990,1992,1993,1995,1998,2003, Gaussian, Inc. All Rights Reserved. This is the Gaussian(R) 03 program. It is based on the the Gaussian(R) 98 system (copyright 1998, Gaussian, Inc.), the Gaussian(R) 94 system (copyright 1995, Gaussian, Inc.), the Gaussian 92(TM) system (copyright 1992, Gaussian, Inc.), the Gaussian 90(TM) system (copyright 1990, Gaussian, Inc.), the Gaussian 88(TM) system (copyright 1988, Gaussian, Inc.), the Gaussian 86(TM) system (copyright 1986, Carnegie Mellon University), and the Gaussian 82(TM) system (copyright 1983, Carnegie Mellon University). Gaussian is a federally registered trademark of Gaussian, Inc. This software contains proprietary and confidential information, including trade secrets, belonging to Gaussian, Inc. This software is provided under written license and may be used, copied, transmitted, or stored only in accord with that written license. The following legend is applicable only to US Government contracts under DFARS: RESTRICTED RIGHTS LEGEND Use, duplication or disclosure by the US Government is subject to restrictions as set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS 252.227-7013. Gaussian, Inc. Carnegie Office Park, Building 6, Pittsburgh, PA 15106 USA The following legend is applicable only to US Government contracts under FAR: RESTRICTED RIGHTS LEGEND Use, reproduction and disclosure by the US Government is subject to restrictions as set forth in subparagraph (c) of the Commercial Computer Software - Restricted Rights clause at FAR 52.227-19. Gaussian, Inc. Carnegie Office Park, Building 6, Pittsburgh, PA 15106 USA --------------------------------------------------------------- Warning -- This program may not be used in any manner that competes with the business of Gaussian, Inc. or will provide assistance to any competitor of Gaussian, Inc. The licensee of this program is prohibited from giving any competitor of Gaussian, Inc. access to this program. By using this program, the user acknowledges that Gaussian, Inc. is engaged in the business of creating and licensing software in the field of computational chemistry and represents and warrants to the licensee that it is not a competitor of Gaussian, Inc. and that it will not use this program in any manner prohibited above. --------------------------------------------------------------- Cite this work as: Gaussian 03, Revision B.03, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople, Gaussian, Inc., Pittsburgh PA, 2003.
Actual program output specific to a certain calculation starts with a statement of the program version, Gaussian revision (here B.03), system software (here LINUX), and the current date. Subsequently the keywords used in the input file are repeated together with other general settings such as the amount of main memory needed for the calculations (here 48MB), and the location of a binary checkpoint file for storage of important results (here /scratch/test1.chk). The "scf=tight" keyword used here specifies tight criteria for the energy calculation and the quantum mechanical method used is "HF/6-31G(d)".
********************************************* Gaussian 03: x86-Linux-G03RevB.03 4-May-2003 18-Oct-2004 ********************************************* %mem=6000000 %chk=/scratch/test1.chk ------------------------ #P HF/6-31G(d) scf=tight ------------------------
The keywords are transformed by Gaussian into a sequence of subroutine calls termed "links". The links are given together with the corresponding options set for each link in a proprietary format. Provided that the "#P" option is used in the input file, Gaussian prints out elapsed CPU times after leaving a link.
1/38=1/1; 2/17=6,18=5,40=1/2; 3/5=1,6=6,7=1,11=9,16=1,25=1,30=1/1,2,3; 4//1; 5/5=2,32=2,38=5/2; 6/7=2,8=2,9=2,10=2,28=1/1; 99/5=1,9=1/99; Leave Link 1 at Mon Oct 18 10:33:45 2004, MaxMem= 6000000 cpu: 0.4
In link101 the program reads in or retrieves from the checkpoint file the structure of the system together with other parameters and prints the structure (in a slightly modified format) together with overall charge and spin multiplicity and the comments supplied in the input file. It is good practice to include the name of the input file in the comments of the job. The system chosen here is formaldehyde in its electronic ground state.
(Enter /scr1/g03/l101.exe) --------------------------------- test1 HF/6-31G(d) sp formaldehyde --------------------------------- Symbolic Z-matrix: Charge = 0 Multiplicity = 1 C1 O2 1 r2 H3 1 r3 2 a3 H4 1 r4 2 a4 3 d4 0 Variables: r2 1.2 r3 1. r4 1. a3 120. a4 120. d4 180. Isotopes and Nuclear Properties: Atom 1 2 3 4 IAtWgt= 12 16 1 1 AtmWgt= 12.0000000 15.9949146 1.0078250 1.0078250 IAtSpn= 0 0 1 1 AtZEff= 0.0000000 0.0000000 0.0000000 0.0000000 AtQMom= 0.0000000 0.0000000 0.0000000 0.0000000 AtGFac= 0.0000000 0.0000000 2.7928460 2.7928460 Leave Link 101 at Mon Oct 18 10:33:46 2004, MaxMem= 6000000 cpu: 0.3
Link202 determines, among others, the symmetry of the system, decides on the symmetry properties that will be used in the actual quantum mechanical calculations and rotates the molecule such that the center of mass is located in the origin of the cartesian coordinate system, the principal axis (so it exists) points along the z-axis, and the principal plane of symmetry (so it exists) is located in the yz-plane. The resulting orientation is printed as "Standard orientation", which serves as the reference description for all information regarding the wavefunction and first and second derivatives of the energy with respect to structural parameters.
(Enter /scr1/g03/l202.exe) Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 0.000000 0.000000 0.000000 2 8 0 0.000000 0.000000 1.200000 3 1 0 0.866025 0.000000 -0.500000 4 1 0 -0.866025 0.000000 -0.500000 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 1 C 0.000000 2 O 1.200000 0.000000 3 H 1.000000 1.907878 0.000000 4 H 1.000000 1.907878 1.732051 0.000000 Stoichiometry CH2O Framework group C2V[C2(CO),SGV(H2)] Deg. of freedom 3 Full point group C2V NOp 4 Largest Abelian subgroup C2V NOp 4 Largest concise Abelian subgroup C2 NOp 2 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 0.000000 0.000000 -0.537500 2 8 0 0.000000 0.000000 0.662500 3 1 0 0.000000 0.866025 -1.037500 4 1 0 0.000000 -0.866025 -1.037500 --------------------------------------------------------------------- Rotational constants (GHZ): 334.3034006 40.3785408 36.0270459 Leave Link 202 at Mon Oct 18 10:33:47 2004, MaxMem= 6000000 cpu: 0.3
link301 loads all components necessary for the actual quantum mechanical part of the calculation.
(Enter /scr1/g03/l301.exe) Standard basis: 6-31G(d) (6D, 7F) There are 18 symmetry adapted basis functions of A1 symmetry. There are 2 symmetry adapted basis functions of A2 symmetry. There are 6 symmetry adapted basis functions of B1 symmetry. There are 8 symmetry adapted basis functions of B2 symmetry. Integral buffers will be 262144 words long. Raffenetti 1 integral format. Two-electron integral symmetry is turned on. 34 basis functions, 64 primitive gaussians, 34 cartesian basis functions 8 alpha electrons 8 beta electrons nuclear repulsion energy 32.2605629825 Hartrees. IExCor= 0 DFT=F Ex=HF Corr=None ExCW=0 ScaHFX= 1.000000 ScaDFX= 1.000000 1.000000 1.000000 1.000000 IRadAn= 0 IRanWt= -1 IRanGd= 0 ICorTp=0 NAtoms= 4 NActive= 4 NUniq= 3 SFac= 2.05D+00 NAtFMM= 60 Big=F Leave Link 301 at Mon Oct 18 10:33:49 2004, MaxMem= 6000000 cpu: 0.1
link303 calculates a number of integrals necessary for the subsequent SCF (energy) calculation.
(Enter /scr1/g03/l302.exe) NPDir=0 NMtPBC= 1 NCelOv= 1 NCel= 1 NClECP= 1 NCelD= 1 NCelK= 1 NCelE2= 1 NClLst= 1 CellRange= 0.0. One-electron integrals computed using PRISM. One-electron integral symmetry used in STVInt NBasis= 34 RedAO= T NBF= 18 2 6 8 NBsUse= 34 1.00D-06 NBFU= 18 2 6 8 Leave Link 302 at Mon Oct 18 10:33:50 2004, MaxMem= 6000000 cpu: 0.8 (Enter /scr1/g03/l303.exe) DipDrv: MaxL=1. Leave Link 303 at Mon Oct 18 10:33:51 2004, MaxMem= 6000000 cpu: 0.0
Before the actual energy calculation is performed, a guess for the wavefunction is obtained using either the Hueckel, the INDO, or the Harris functional method. Alternatively, a guess can also be read from the checkpoint or the input file.
(Enter /scr1/g03/l401.exe) Harris functional with IExCor= 205 diagonalized for initial guess. ExpMin= 1.61D-01 ExpMax= 5.48D+03 ExpMxC= 8.25D+02 IAcc=1 IRadAn= 1 AccDes= 1.00D-06 HarFok: IExCor= 205 AccDes= 1.00D-06 IRadAn= 1 IDoV=1 ScaDFX= 1.000000 1.000000 1.000000 1.000000 Harris En= -113.945080996335 Initial guess orbital symmetries: Occupied (A1) (A1) (A1) (A1) (B2) (A1) (B1) (B2) Virtual (B1) (A1) (B2) (A1) (B1) (A1) (B2) (A1) (A1) (B2) (B1) (A1) (B2) (A1) (A2) (B1) (A1) (A2) (B2) (A1) (A1) (B1) (B2) (A1) (A1) (A1) The electronic state of the initial guess is 1-A1. Leave Link 401 at Mon Oct 18 10:33:52 2004, MaxMem= 6000000 cpu: 0.3
Calculation of the HF/6-31G(d) energy of the system is done in link 502. Some parameters such as the currently selected convergence criteria are listed first. The final SCF energy given as E(RHF) = -113.852967419 is the energy of the system with respect to its nuclei and electrons at infinite separation. The energy is given in atomic units (Hartree).
(Enter /scr1/g03/l502.exe) Closed shell SCF: Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. Using DIIS extrapolation, IDIIS= 1040. Integral symmetry usage will be decided dynamically. Keep R1 integrals in memory in canonical form, NReq= 649414. IEnd= 21265 IEndB= 21265 NGot= 6000000 MDV= 5819242 LenX= 5819242 Symmetry not used in FoFDir. MinBra= 0 MaxBra= 2 Meth= 1. IRaf= 0 NMat= 1 IRICut= 1 DoRegI=T DoRafI=F ISym2E= 0 JSym2E=0. Cycle 1 Pass 1 IDiag 1: E= -113.781069939217 DIIS: error= 5.84D-02 at cycle 1 NSaved= 1. NSaved= 1 IEnMin= 1 EnMin= -113.781069939217 IErMin= 1 ErrMin= 5.84D-02 ErrMax= 5.84D-02 EMaxC= 1.00D-01 BMatC= 1.25D-01 BMatP= 1.25D-01 IDIUse=3 WtCom= 4.16D-01 WtEn= 5.84D-01 Coeff-Com: 0.100D+01 Coeff-En: 0.100D+01 Coeff: 0.100D+01 Gap= 0.589 Goal= None Shift= 0.000 GapD= 0.589 DampG=2.000 DampE=0.500 DampFc=1.0000 IDamp=-1. RMSDP=8.47D-03 MaxDP=8.79D-02 OVMax= 1.03D-01 Cycle 2 Pass 1 IDiag 1: E= -113.841049890726 Delta-E= -0.059979951509 Rises=F Damp=F DIIS: error= 2.21D-02 at cycle 2 NSaved= 2. NSaved= 2 IEnMin= 2 EnMin= -113.841049890726 IErMin= 2 ErrMin= 2.21D-02 ErrMax= 2.21D-02 EMaxC= 1.00D-01 BMatC= 1.76D-02 BMatP= 1.25D-01 IDIUse=3 WtCom= 7.79D-01 WtEn= 2.21D-01 Coeff-Com: 0.200D+00 0.800D+00 Coeff-En: 0.000D+00 0.100D+01 Coeff: 0.156D+00 0.844D+00 Gap= 0.607 Goal= None Shift= 0.000 RMSDP=3.85D-03 MaxDP=4.13D-02 DE=-6.00D-02 OVMax= 4.74D-02 Cycle 3 Pass 1 IDiag 1: E= -113.850643979636 Delta-E= -0.009594088910 Rises=F Damp=F DIIS: error= 1.06D-02 at cycle 3 NSaved= 3. NSaved= 3 IEnMin= 3 EnMin= -113.850643979636 IErMin= 3 ErrMin= 1.06D-02 ErrMax= 1.06D-02 EMaxC= 1.00D-01 BMatC= 3.26D-03 BMatP= 1.76D-02 IDIUse=3 WtCom= 8.94D-01 WtEn= 1.06D-01 Coeff-Com: -0.129D-01 0.280D+00 0.733D+00 Coeff-En: 0.000D+00 0.000D+00 0.100D+01 Coeff: -0.115D-01 0.250D+00 0.761D+00 Gap= 0.582 Goal= None Shift= 0.000 RMSDP=1.12D-03 MaxDP=1.57D-02 DE=-9.59D-03 OVMax= 2.18D-02 Cycle 4 Pass 1 IDiag 1: E= -113.852856198637 Delta-E= -0.002212219000 Rises=F Damp=F DIIS: error= 1.79D-03 at cycle 4 NSaved= 4. NSaved= 4 IEnMin= 4 EnMin= -113.852856198637 IErMin= 4 ErrMin= 1.79D-03 ErrMax= 1.79D-03 EMaxC= 1.00D-01 BMatC= 1.39D-04 BMatP= 3.26D-03 IDIUse=3 WtCom= 9.82D-01 WtEn= 1.79D-02 Coeff-Com: -0.818D-02 0.238D-01 0.213D+00 0.772D+00 Coeff-En: 0.000D+00 0.000D+00 0.000D+00 0.100D+01 Coeff: -0.804D-02 0.234D-01 0.209D+00 0.776D+00 Gap= 0.586 Goal= None Shift= 0.000 RMSDP=2.68D-04 MaxDP=2.12D-03 DE=-2.21D-03 OVMax= 2.76D-03 Cycle 5 Pass 1 IDiag 1: E= -113.852962653727 Delta-E= -0.000106455090 Rises=F Damp=F DIIS: error= 3.38D-04 at cycle 5 NSaved= 5. NSaved= 5 IEnMin= 5 EnMin= -113.852962653727 IErMin= 5 ErrMin= 3.38D-04 ErrMax= 3.38D-04 EMaxC= 1.00D-01 BMatC= 1.71D-06 BMatP= 1.39D-04 IDIUse=3 WtCom= 9.97D-01 WtEn= 3.38D-03 Coeff-Com: 0.199D-02-0.160D-01-0.697D-01-0.163D+00 0.125D+01 Coeff-En: 0.000D+00 0.000D+00 0.000D+00 0.000D+00 0.100D+01 Coeff: 0.199D-02-0.159D-01-0.695D-01-0.163D+00 0.125D+01 Gap= 0.586 Goal= None Shift= 0.000 RMSDP=7.85D-05 MaxDP=8.34D-04 DE=-1.06D-04 OVMax= 1.16D-03 Cycle 6 Pass 1 IDiag 1: E= -113.852966770687 Delta-E= -0.000004116960 Rises=F Damp=F DIIS: error= 7.67D-05 at cycle 6 NSaved= 6. NSaved= 6 IEnMin= 6 EnMin= -113.852966770687 IErMin= 6 ErrMin= 7.67D-05 ErrMax= 7.67D-05 EMaxC= 1.00D-01 BMatC= 2.30D-07 BMatP= 1.71D-06 IDIUse=1 WtCom= 1.00D+00 WtEn= 0.00D+00 Coeff-Com: -0.395D-03 0.445D-02 0.188D-01 0.567D-02-0.417D+00 0.139D+01 Coeff: -0.395D-03 0.445D-02 0.188D-01 0.567D-02-0.417D+00 0.139D+01 Gap= 0.587 Goal= None Shift= 0.000 RMSDP=2.96D-05 MaxDP=2.63D-04 DE=-4.12D-06 OVMax= 4.74D-04 Cycle 7 Pass 1 IDiag 1: E= -113.852967348217 Delta-E= -0.000000577530 Rises=F Damp=F DIIS: error= 3.13D-05 at cycle 7 NSaved= 7. NSaved= 7 IEnMin= 7 EnMin= -113.852967348217 IErMin= 7 ErrMin= 3.13D-05 ErrMax= 3.13D-05 EMaxC= 1.00D-01 BMatC= 2.55D-08 BMatP= 2.30D-07 IDIUse=1 WtCom= 1.00D+00 WtEn= 0.00D+00 Coeff-Com: -0.448D-04-0.727D-04 0.683D-03 0.670D-02 0.565D-01-0.617D+00 Coeff-Com: 0.155D+01 Coeff: -0.448D-04-0.727D-04 0.683D-03 0.670D-02 0.565D-01-0.617D+00 Coeff: 0.155D+01 Gap= 0.587 Goal= None Shift= 0.000 RMSDP=1.27D-05 MaxDP=1.01D-04 DE=-5.78D-07 OVMax= 2.15D-04 Cycle 8 Pass 1 IDiag 1: E= -113.852967418073 Delta-E= -0.000000069856 Rises=F Damp=F DIIS: error= 5.85D-06 at cycle 8 NSaved= 8. NSaved= 8 IEnMin= 8 EnMin= -113.852967418073 IErMin= 8 ErrMin= 5.85D-06 ErrMax= 5.85D-06 EMaxC= 1.00D-01 BMatC= 5.15D-10 BMatP= 2.55D-08 IDIUse=1 WtCom= 1.00D+00 WtEn= 0.00D+00 Coeff-Com: 0.349D-04-0.217D-03-0.113D-02-0.372D-02 0.333D-03 0.173D+00 Coeff-Com: -0.595D+00 0.143D+01 Coeff: 0.349D-04-0.217D-03-0.113D-02-0.372D-02 0.333D-03 0.173D+00 Coeff: -0.595D+00 0.143D+01 Gap= 0.587 Goal= None Shift= 0.000 RMSDP=1.66D-06 MaxDP=1.36D-05 DE=-6.99D-08 OVMax= 2.25D-05 Cycle 9 Pass 1 IDiag 1: E= -113.852967419256 Delta-E= -0.000000001183 Rises=F Damp=F DIIS: error= 7.58D-07 at cycle 9 NSaved= 9. NSaved= 9 IEnMin= 9 EnMin= -113.852967419256 IErMin= 9 ErrMin= 7.58D-07 ErrMax= 7.58D-07 EMaxC= 1.00D-01 BMatC= 8.31D-12 BMatP= 5.15D-10 IDIUse=1 WtCom= 1.00D+00 WtEn= 0.00D+00 Coeff-Com: -0.103D-04 0.745D-04 0.377D-03 0.958D-03-0.247D-02-0.331D-01 Coeff-Com: 0.135D+00-0.421D+00 0.132D+01 Coeff: -0.103D-04 0.745D-04 0.377D-03 0.958D-03-0.247D-02-0.331D-01 Coeff: 0.135D+00-0.421D+00 0.132D+01 Gap= 0.587 Goal= None Shift= 0.000 RMSDP=2.03D-07 MaxDP=2.00D-06 DE=-1.18D-09 OVMax= 2.16D-06 Cycle 10 Pass 1 IDiag 1: E= -113.852967419271 Delta-E= -0.000000000015 Rises=F Damp=F DIIS: error= 5.37D-08 at cycle 10 NSaved= 10. NSaved=10 IEnMin=10 EnMin= -113.852967419271 IErMin=10 ErrMin= 5.37D-08 ErrMax= 5.37D-08 EMaxC= 1.00D-01 BMatC= 1.33D-13 BMatP= 8.31D-12 IDIUse=1 WtCom= 1.00D+00 WtEn= 0.00D+00 Coeff-Com: 0.116D-05-0.940D-05-0.470D-04-0.860D-04 0.496D-03 0.220D-02 Coeff-Com: -0.116D-01 0.478D-01-0.259D+00 0.122D+01 Coeff: 0.116D-05-0.940D-05-0.470D-04-0.860D-04 0.496D-03 0.220D-02 Coeff: -0.116D-01 0.478D-01-0.259D+00 0.122D+01 Gap= 0.587 Goal= None Shift= 0.000 RMSDP=3.37D-08 MaxDP=2.97D-07 DE=-1.51D-11 OVMax= 2.66D-07 Cycle 11 Pass 1 IDiag 1: E= -113.852967419271 Delta-E= 0.000000000000 Rises=F Damp=F DIIS: error= 9.48D-09 at cycle 11 NSaved= 11. NSaved=11 IEnMin=11 EnMin= -113.852967419271 IErMin=11 ErrMin= 9.48D-09 ErrMax= 9.48D-09 EMaxC= 1.00D-01 BMatC= 2.20D-15 BMatP= 1.33D-13 IDIUse=1 WtCom= 1.00D+00 WtEn= 0.00D+00 Coeff-Com: -0.890D-07 0.758D-06 0.434D-05 0.380D-05-0.669D-04 0.126D-04 Coeff-Com: 0.406D-03-0.338D-02 0.292D-01-0.218D+00 0.119D+01 Coeff: -0.890D-07 0.758D-06 0.434D-05 0.380D-05-0.669D-04 0.126D-04 Coeff: 0.406D-03-0.338D-02 0.292D-01-0.218D+00 0.119D+01 Gap= 0.587 Goal= None Shift= 0.000 RMSDP=2.65D-09 MaxDP=2.21D-08 DE=-2.27D-13 OVMax= 2.68D-08 SCF Done: E(RHF) = -113.852967419 A.U. after 11 cycles Convg = 0.2649D-08 -V/T = 1.9997 S**2 = 0.0000 KE= 1.138889777761D+02 PE=-3.330532989848D+02 EE= 7.305079080697D+01 Leave Link 502 at Mon Oct 18 10:33:58 2004, MaxMem= 6000000 cpu: 1.1
Selected information on the optimized wavefunction is printed along with a Mulliken population analysis in link601.
(Enter /scr1/g03/l601.exe) Copying SCF densities to generalized density rwf, ISCF=0 IROHF=0. ********************************************************************** Population analysis using the SCF density. ********************************************************************** Orbital symmetries: Occupied (A1) (A1) (A1) (A1) (B2) (A1) (B1) (B2) Virtual (B1) (A1) (B2) (A1) (B1) (A1) (B2) (A1) (A1) (B2) (A1) (B1) (B2) (A1) (A2) (B1) (A1) (A2) (B2) (A1) (A1) (B1) (B2) (A1) (A1) (A1) The electronic state is 1-A1. Alpha occ. eigenvalues -- -20.57603 -11.31546 -1.40250 -0.89790 -0.72365 Alpha occ. eigenvalues -- -0.64488 -0.52755 -0.44339 Alpha virt. eigenvalues -- 0.14325 0.27254 0.34861 0.37647 0.73913 Alpha virt. eigenvalues -- 0.80034 0.82453 0.97649 1.10532 1.18714 Alpha virt. eigenvalues -- 1.22933 1.27415 1.33708 1.62596 1.76972 Alpha virt. eigenvalues -- 1.80651 2.00802 2.24294 2.28103 2.51332 Alpha virt. eigenvalues -- 2.70989 2.89384 3.04381 3.30687 4.11684 Alpha virt. eigenvalues -- 4.52410 Condensed to atoms (all electrons): 1 2 3 4 1 C 4.535451 0.545272 0.388868 0.388868 2 O 0.545272 8.013683 -0.057728 -0.057728 3 H 0.388868 -0.057728 0.597808 -0.079928 4 H 0.388868 -0.057728 -0.079928 0.597808 Mulliken atomic charges: 1 1 C 0.141540 2 O -0.443500 3 H 0.150980 4 H 0.150980 Sum of Mulliken charges= 0.00000 Atomic charges with hydrogens summed into heavy atoms: 1 1 C 0.443500 2 O -0.443500 3 H 0.000000 4 H 0.000000 Sum of Mulliken charges= 0.00000 Electronic spatial extent (au): = 57.2540 Charge= 0.0000 electrons Dipole moment (field-independent basis, Debye): X= 0.0000 Y= 0.0000 Z= -2.8199 Tot= 2.8199 Quadrupole moment (field-independent basis, Debye-Ang): XX= -11.2700 YY= -11.2435 ZZ= -11.7586 XY= 0.0000 XZ= 0.0000 YZ= 0.0000 Traceless Quadrupole moment (field-independent basis, Debye-Ang): XX= 0.1540 YY= 0.1805 ZZ= -0.3346 XY= 0.0000 XZ= 0.0000 YZ= 0.0000 Octapole moment (field-independent basis, Debye-Ang**2): XXX= 0.0000 YYY= 0.0000 ZZZ= -0.2636 XYY= 0.0000 XXY= 0.0000 XXZ= 0.3457 XZZ= 0.0000 YZZ= 0.0000 YYZ= -0.4711 XYZ= 0.0000 Hexadecapole moment (field-independent basis, Debye-Ang**3): XXXX= -9.0469 YYYY= -15.1879 ZZZZ= -40.7625 XXXY= 0.0000 XXXZ= 0.0000 YYYX= 0.0000 YYYZ= 0.0000 ZZZX= 0.0000 ZZZY= 0.0000 XXYY= -4.2304 XXZZ= -8.2015 YYZZ= -9.1659 XXYZ= 0.0000 YYXZ= 0.0000 ZZXY= 0.0000 N-N= 3.226056298246D+01 E-N=-3.330532990315D+02 KE= 1.138889777761D+02 Symmetry A1 KE= 1.035048839320D+02 Symmetry A2 KE= 1.383951977151D-34 Symmetry B1 KE= 3.440292093306D+00 Symmetry B2 KE= 6.943801750813D+00 No NMR shielding tensors so no spin-rotation constants. Leave Link 601 at Mon Oct 18 10:34:00 2004, MaxMem= 6000000 cpu: 1.1
At the very end of each Gaussian calculation, an archive entry in a very compact format is printed to summarize the results. This archive entry is frequently used as supplemental material in publications of theoretical results.
(Enter /scr1/g03/l9999.exe) 1\1\GINC-TERMINUS\SP\RHF\6-31G(d)\C1H2O1\ZIPSE\18-Oct-2004\0\\#P HF/6- 31G(D) SCF=TIGHT\\test1 HF/6-31G(d) sp formaldehyde\\0,1\C\O,1,1.2\H,1 ,1.,2,120.\H,1,1.,2,120.,3,180.,0\\Version=x86-Linux-G03RevB.03\State= 1-A1\HF=-113.8529674\RMSD=2.649e-09\Dipole=0.,0.,-1.1094497\PG=C02V [C 2(C1O1),SGV(H2)]\\@
From a database of citations, Gaussian prints one entry together with some timing information.
MOST BUREAUCRACIES FUNCTION LIKE A SEPTIC TANK. THE LARGE CHUNKS RISE TO THE TOP. Job cpu time: 0 days 0 hours 0 minutes 9.3 seconds. File lengths (MBytes): RWF= 11 Int= 0 D2E= 0 Chk= 7 Scr= 1 Normal termination of Gaussian 03 at Mon Oct 18 10:34:16 2004.