A Typical Gaussian Output File
The first part of the Gaussian 16 output file states in considerable detail the contents of the license agreement. This should be taken seriously. Gaussian 16 is no public domain software!!
Entering Gaussian System, Link 0=/scr1/g16_a.03_sse4/g16/g16 Initial command: /scr1/g16_a.03_sse4/g16/l1.exe "/scr1/zipse/17061/Gau-21572.inp" -scrdir="/scr1/zipse/17061/" Entering Link 1 = /scr1/g16_a.03_sse4/g16/l1.exe PID= 21576. Copyright (c) 1988,1990,1992,1993,1995,1998,2003,2009,2016, Gaussian, Inc. All Rights Reserved. This is part of the Gaussian(R) 16 program. It is based on the Gaussian(R) 09 system (copyright 2009, Gaussian, Inc.), the Gaussian(R) 03 system (copyright 2003, Gaussian, Inc.), the Gaussian(R) 98 system (copyright 1998, Gaussian, Inc.), the Gaussian(R) 94 system (copyright 1995, Gaussian, Inc.), the Gaussian 92(TM) system (copyright 1992, Gaussian, Inc.), the Gaussian 90(TM) system (copyright 1990, Gaussian, Inc.), the Gaussian 88(TM) system (copyright 1988, Gaussian, Inc.), the Gaussian 86(TM) system (copyright 1986, Carnegie Mellon University), and the Gaussian 82(TM) system (copyright 1983, Carnegie Mellon University). Gaussian is a federally registered trademark of Gaussian, Inc. This software contains proprietary and confidential information, including trade secrets, belonging to Gaussian, Inc. This software is provided under written license and may be used, copied, transmitted, or stored only in accord with that written license. The following legend is applicable only to US Government contracts under FAR: RESTRICTED RIGHTS LEGEND Use, reproduction and disclosure by the US Government is subject to restrictions as set forth in subparagraphs (a) and (c) of the Commercial Computer Software - Restricted Rights clause in FAR 52.227-19. Gaussian, Inc. 340 Quinnipiac St., Bldg. 40, Wallingford CT 06492 --------------------------------------------------------------- Warning -- This program may not be used in any manner that competes with the business of Gaussian, Inc. or will provide assistance to any competitor of Gaussian, Inc. The licensee of this program is prohibited from giving any competitor of Gaussian, Inc. access to this program. By using this program, the user acknowledges that Gaussian, Inc. is engaged in the business of creating and licensing software in the field of computational chemistry and represents and warrants to the licensee that it is not a competitor of Gaussian, Inc. and that it will not use this program in any manner prohibited above. --------------------------------------------------------------- Cite this work as: Gaussian 16, Revision A.03, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.
Actual program output specific to a certain calculation starts with a statement of the program version (here Gaussian 16), program revision (here A.03), and the current date. Subsequently the keywords used in the input file are repeated together with other general settings such as the amount of main memory available for the calculations (here 16000MB), and the location of a binary checkpoint file for storage of important results (here /scr1/zipse/17079/watdim01.chk). The calculation performed here is the B3LYP/6-31+G(d,p) geometry optimization of the water dimer, complemented by the D3 dispersion correction.
****************************************** Gaussian 16: ES64L-G16RevA.03 25-Dec-2016 10-Mar-2020 ****************************************** %chk=/scr1/zipse/17079/watdim01.chk %CPU=0-7 SetSPE: set environment variable "MP_BIND" = "yes" SetSPE: set environment variable "MP_BLIST" = "0,1,2,3,4,5,6,7" Will use up to 8 processors via shared memory. %mem=16000MB ---------------------------------------------------------------------- #p b3lyp/6-31+G(d,p) opt=(Z-Matrix) iop(1/7=30) int=ultrafine Empirica lDispersion=GD3 ----------------------------------------------------------------------
The keywords are transformed by Gaussian into a sequence of subroutine calls termed "links". The links are given together with the corresponding options set for each link in a proprietary format. Provided that the "#P" option is used in the input file, Gaussian prints out elapsed CPU times after leaving a link.
1/7=30,10=7,18=40,26=4,38=1/1,3; 2/12=2,17=6,18=5,29=3,40=1/2; 3/5=1,6=6,7=111,11=2,25=1,30=1,71=1,74=-5,75=-5,124=31/1,2,3; 4//1; 5/5=2,38=5/2; 6/7=2,8=2,9=2,10=2,28=1/1; 7/29=1/1,2,3,16; 1/7=30,10=7,18=40,26=4/3(2); 2/29=3/2; 99//99; 2/29=3/2; 3/5=1,6=6,7=111,11=2,25=1,30=1,71=1,74=-5,75=-5,124=31/1,2,3; 4/5=5,16=3,69=1/1; 5/5=2,38=5/2; 7//1,2,3,16; 1/7=30,18=40,26=4/3(-5); 2/29=3/2; 6/7=2,8=2,9=2,10=2,19=2,28=1/1; 99/9=1/99; Leave Link 1 at Tue Mar 10 15:04:55 2020, MaxMem= 2097152000 cpu: 0.7 elap: 0.1
In link L101 the program reads in or retrieves from the checkpoint file the structure of the system together with other parameters and prints the structure (in a slightly modified format) together with overall charge and spin multiplicity and the comments supplied in the input file. It is good practice to include the name of the input file in the comments of the job. The system chosen here is the water dimer in its electronic ground state.
(Enter /scr1/g16_a.03_sse4/g16/l101.exe) ---------------------------------------------------------------------- watdim01 water dimer, B3LYP-D3/6-31+G(d,p) opt tight, Cs, int=ultrafin e ---------------------------------------------------------------------- Symbolic Z-matrix: Charge = 0 Multiplicity = 1 O1 H2 1 r2 H3 1 r3 2 a3 X4 2 1. 1 90. 3 180. 0 O5 2 r5 4 a5 1 180. 0 H6 5 r6 2 a6 4 d6 0 H7 5 r6 2 a6 4 -d6 0 Variables: r2 0.9732 r3 0.9641 r5 1.9128 r6 0.9659 a3 105.9 a5 83.1 a6 112.1 d6 59.6 ITRead= 0 0 0 0 0 0 MicOpt= -1 -1 -1 -1 -1 -1 NAtoms= 6 NQM= 6 NQMF= 0 NMMI= 0 NMMIF= 0 NMic= 0 NMicF= 0. Isotopes and Nuclear Properties: (Nuclear quadrupole moments (NQMom) in fm**2, nuclear magnetic moments (NMagM) in nuclear magnetons) Atom 1 2 3 4 5 6 IAtWgt= 16 1 1 16 1 1 AtmWgt= 15.9949146 1.0078250 1.0078250 15.9949146 1.0078250 1.0078250 NucSpn= 0 1 1 0 1 1 AtZEff= -0.0000000 -0.0000000 -0.0000000 -0.0000000 -0.0000000 -0.0000000 NQMom= 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 NMagM= 0.0000000 2.7928460 2.7928460 0.0000000 2.7928460 2.7928460 AtZNuc= 8.0000000 1.0000000 1.0000000 8.0000000 1.0000000 1.0000000 Leave Link 101 at Tue Mar 10 15:04:55 2020, MaxMem= 2097152000 cpu: 1.6 elap: 0.2
Link L103 initiallizes the Berny geometry optimization algorithm named after its creator Bernhard Schlegel. This includes the generation of second derivative estimates for the optimization variables.
(Enter /scr1/g16_a.03_sse4/g16/l103.exe) GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Initialization pass. ---------------------------- ! Initial Parameters ! ! (Angstroms and Degrees) ! ---------------------- ---------------------- ! Name Value Derivative information (Atomic Units) ! ------------------------------------------------------------------------ ! r2 0.9732 estimate D2E/DX2 ! ! r3 0.9641 estimate D2E/DX2 ! ! r5 1.9128 estimate D2E/DX2 ! ! r6 0.9659 estimate D2E/DX2 ! ! a3 105.9 estimate D2E/DX2 ! ! a5 83.1 estimate D2E/DX2 ! ! a6 112.1 estimate D2E/DX2 ! ! d6 59.6 estimate D2E/DX2 ! ------------------------------------------------------------------------ Trust Radius=3.00D-01 FncErr=1.00D-07 GrdErr=1.00D-06 EigMax=2.50D+02 EigMin=1.00D-04 Number of steps in this run= 20 maximum allowed number of steps= 100. GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Leave Link 103 at Tue Mar 10 15:04:55 2020, MaxMem= 2097152000 cpu: 0.3 elap: 0.1
Link L202 determines, among others, the symmetry of the system, decides on the symmetry properties that will be used in the actual quantum mechanical calculations and rotates the molecule such that the center of mass is located in the origin of the cartesian coordinate system, the principal axis (so it exists) points along the z-axis, and the principal plane of symmetry (so it exists) is located in the yz-plane. The resulting orientation is printed as "Standard orientation", which serves as the reference description for all information regarding the wavefunction and first and second derivatives of the energy with respect to structural parameters.
(Enter /scr1/g16_a.03_sse4/g16/l202.exe) --------------------------------------------------------------------------------------------------- Z-MATRIX (ANGSTROMS AND DEGREES) CD Cent Atom N1 Length/X N2 Alpha/Y N3 Beta/Z J --------------------------------------------------------------------------------------------------- 1 1 O 2 2 H 1 0.973200( 1) 3 3 H 1 0.964100( 2) 2 105.900( 7) 4 X 2 1.000000( 3) 1 90.000( 8) 3 180.000( 12) 0 5 4 O 2 1.912800( 4) 4 83.100( 9) 1 180.000( 13) 0 6 5 H 5 0.965900( 5) 2 112.100( 10) 4 59.600( 14) 0 7 6 H 5 0.965900( 6) 2 112.100( 11) 4 -59.600( 15) 0 --------------------------------------------------------------------------------------------------- Z-Matrix orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 8 0 0.000000 0.000000 0.000000 2 1 0 0.000000 0.000000 0.973200 3 1 0 0.927215 0.000000 -0.264124 4 -1 0 -1.000000 0.000000 0.973200 5 8 0 -0.229798 0.000000 2.872146 6 1 0 -0.723042 -0.771893 3.178503 7 1 0 -0.723042 0.771893 3.178503 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 O 0.000000 2 H 0.973200 0.000000 3 H 0.964100 1.546188 0.000000 4 X 1.395392 1.000000 2.290224 0.000000 5 O 2.881325 1.912800 3.342883 2.049197 0.000000 6 H 3.349849 2.445807 3.894977 2.352847 0.965900 7 H 3.349849 2.445807 3.894977 2.352847 0.965900 6 7 6 H 0.000000 7 H 1.543786 0.000000 Stoichiometry H4O2 Framework group CS[SG(H2O2),X(H2)] Deg. of freedom 8 Full point group CS NOp 2 Largest Abelian subgroup CS NOp 2 Largest concise Abelian subgroup CS NOp 2 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 8 0 0.002317 1.506778 0.000000 2 1 0 -0.075300 0.536678 0.000000 3 1 0 -0.900880 1.844010 -0.000000 4 8 0 0.002317 -1.374547 -0.000000 5 1 0 0.469556 -1.719266 0.771893 6 1 0 0.469556 -1.719266 -0.771893 --------------------------------------------------------------------- Rotational constants (GHZ): 217.7713744 6.5254061 6.5185686 Leave Link 202 at Tue Mar 10 15:04:55 2020, MaxMem= 2097152000 cpu: 0.3 elap: 0.1
Link L301 loads all components necessary for the actual quantum mechanical part of the calculation. In addition, it also lists the nuclear repulsion energies as well as the London dispersion energies calculated accoring to the D3 formula (both in Hartree).
(Enter /scr1/g16_a.03_sse4/g16/l301.exe) Standard basis: 6-31+G(d,p) (6D, 7F) Ernie: Thresh= 0.10000D-02 Tol= 0.10000D-05 Strict=F. There are 41 symmetry adapted cartesian basis functions of A' symmetry. There are 17 symmetry adapted cartesian basis functions of A" symmetry. There are 41 symmetry adapted basis functions of A' symmetry. There are 17 symmetry adapted basis functions of A" symmetry. 58 basis functions, 92 primitive gaussians, 58 cartesian basis functions 10 alpha electrons 10 beta electrons nuclear repulsion energy 36.6574882778 Hartrees. IExCor= 402 DFT=T Ex+Corr=B3LYP ExCW=0 ScaHFX= 0.200000 ScaDFX= 0.800000 0.720000 1.000000 0.810000 ScalE2= 1.000000 1.000000 IRadAn= 5 IRanWt= -1 IRanGd= 0 ICorTp=0 IEmpDi=131 NAtoms= 6 NActive= 6 NUniq= 5 SFac= 1.44D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. R6Disp: Grimme-D3 Dispersion energy= -0.0011777681 Hartrees. Nuclear repulsion after empirical dispersion term = 36.6563105097 Hartrees. Leave Link 301 at Tue Mar 10 15:04:55 2020, MaxMem= 2097152000 cpu: 0.8 elap: 0.2
Link L302 calculates a number of integrals necessary for the subsequent SCF (energy) calculation.
(Enter /scr1/g16_a.03_sse4/g16/l302.exe) NPDir=0 NMtPBC= 1 NCelOv= 1 NCel= 1 NClECP= 1 NCelD= 1 NCelK= 1 NCelE2= 1 NClLst= 1 CellRange= 0.0. One-electron integrals computed using PRISM. One-electron integral symmetry used in STVInt NBasis= 58 RedAO= T EigKep= 9.40D-03 NBF= 41 17 NBsUse= 58 1.00D-06 EigRej= -1.00D+00 NBFU= 41 17 Precomputing XC quadrature grid using IXCGrd= 4 IRadAn= 5 IRanWt= -1 IRanGd= 0 AccXCQ= 0.00D+00. Generated NRdTot= 0 NPtTot= 0 NUsed= 0 NTot= 32 NSgBfM= 58 58 58 58 58 MxSgAt= 6 MxSgA2= 6. Leave Link 302 at Tue Mar 10 15:04:56 2020, MaxMem= 2097152000 cpu: 2.0 elap: 0.4 (Enter /scr1/g16_a.03_sse4/g16/l303.exe) DipDrv: MaxL=1. Leave Link 303 at Tue Mar 10 15:04:56 2020, MaxMem= 2097152000 cpu: 0.6 elap: 0.2
Before the actual energy calculation is performed, a guess for the wavefunction is obtained using either the Hueckel, the INDO, or the Harris functional method. Alternatively, a guess can also be read from the checkpoint or the input file.
ExpMin= 8.45D-02 ExpMax= 5.48D+03 ExpMxC= 8.25D+02 IAcc=3 IRadAn= 5 AccDes= 0.00D+00 Harris functional with IExCor= 402 and IRadAn= 5 diagonalized for initial guess. HarFok: IExCor= 402 AccDes= 0.00D+00 IRadAn= 5 IDoV= 1 UseB2=F ITyADJ=14 ICtDFT= 3500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000 FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T wScrn= 0.000000 ICntrl= 500 IOpCl= 0 I1Cent= 200000004 NGrid= 0 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 Petite list used in FoFCou. Harris En= -152.930023882396 JPrj=0 DoOrth=F DoCkMO=F. Initial guess orbital symmetries: Occupied (A') (A') (A') (A') (A") (A') (A') (A') (A') (A") Virtual (A') (A') (A") (A') (A') (A") (A') (A') (A') (A") (A') (A') (A") (A') (A') (A') (A") (A") (A') (A') (A') (A') (A') (A') (A") (A") (A') (A') (A") (A') (A') (A') (A") (A') (A") (A') (A") (A") (A') (A") (A') (A') (A') (A') (A") (A') (A') (A') The electronic state of the initial guess is 1-A'. Leave Link 401 at Tue Mar 10 15:04:57 2020, MaxMem= 2097152000 cpu: 3.4 elap: 0.6
Calculation of the B3LYP-D3/6-31+G(d,p) energy of the system is done in link 502. Some parameters such as the currently selected convergence criteria are listed first. The final SCF energy given as E(RB3LYP) = -152.878894550 is the energy of the system with respect to its nuclei and electrons at infinite separation. The energy is given in atomic units (Hartree).
(Enter /scr1/g16_a.03_sse4/g16/l502.exe) Keep R1 ints in memory in symmetry-blocked form, NReq=8507020. FoFCou: FMM=F IPFlag= 0 FMFlag= 0 FMFlg1= 0 NFxFlg= 0 DoJE=F BraDBF=F KetDBF=F FulRan=T wScrn= 0.000000 ICntrl= 600 IOpCl= 0 I1Cent= 0 NGrid= 0 NMat0= 1 NMatS0= 1711 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 Petite list used in FoFCou. Closed shell SCF: Using DIIS extrapolation, IDIIS= 1040. NGot= 2097152000 LenX= 2096381930 LenY= 2096378125 Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. Integral accuracy reduced to 1.0D-05 until final iterations. Cycle 1 Pass 0 IDiag 1: E= -152.743601726217 DIIS: error= 5.75D-02 at cycle 1 NSaved= 1. NSaved= 1 IEnMin= 1 EnMin= -152.743601726217 IErMin= 1 ErrMin= 5.75D-02 ErrMax= 5.75D-02 0.00D+00 EMaxC= 1.00D-01 BMatC= 1.80D-01 BMatP= 1.80D-01 IDIUse=3 WtCom= 4.25D-01 WtEn= 5.75D-01 Coeff-Com: 0.100D+01 Coeff-En: 0.100D+01 Coeff: 0.100D+01 Gap= 0.147 Goal= None Shift= 0.000 GapD= 0.147 DampG=1.000 DampE=0.500 DampFc=0.5000 IDamp=-1. Damping current iteration by 5.00D-01 RMSDP=1.16D-02 MaxDP=1.88D-01 OVMax= 2.39D-01 Cycle 2 Pass 0 IDiag 1: E= -152.770728734045 Delta-E= -0.027127007828 Rises=F Damp=T DIIS: error= 2.20D-02 at cycle 2 NSaved= 2. NSaved= 2 IEnMin= 2 EnMin= -152.770728734045 IErMin= 2 ErrMin= 2.20D-02 ErrMax= 2.20D-02 0.00D+00 EMaxC= 1.00D-01 BMatC= 2.18D-02 BMatP= 1.80D-01 IDIUse=3 WtCom= 7.80D-01 WtEn= 2.20D-01 Coeff-Com: 0.248D+00 0.752D+00 Coeff-En: 0.408D+00 0.592D+00 Coeff: 0.283D+00 0.717D+00 Gap= 0.280 Goal= None Shift= 0.000 RMSDP=1.59D-03 MaxDP=2.22D-02 DE=-2.71D-02 OVMax= 1.56D-01 Cycle 3 Pass 0 IDiag 1: E= -152.878518174001 Delta-E= -0.107789439956 Rises=F Damp=F DIIS: error= 3.24D-03 at cycle 3 NSaved= 3. NSaved= 3 IEnMin= 3 EnMin= -152.878518174001 IErMin= 3 ErrMin= 3.24D-03 ErrMax= 3.24D-03 0.00D+00 EMaxC= 1.00D-01 BMatC= 5.57D-04 BMatP= 2.18D-02 IDIUse=3 WtCom= 9.68D-01 WtEn= 3.24D-02 Coeff-Com: 0.527D-01 0.260D-01 0.921D+00 Coeff-En: 0.000D+00 0.000D+00 0.100D+01 Coeff: 0.510D-01 0.252D-01 0.924D+00 Gap= 0.291 Goal= None Shift= 0.000 RMSDP=3.11D-04 MaxDP=6.88D-03 DE=-1.08D-01 OVMax= 6.78D-03 Cycle 4 Pass 0 IDiag 1: E= -152.878733235554 Delta-E= -0.000215061553 Rises=F Damp=F DIIS: error= 1.83D-03 at cycle 4 NSaved= 4. NSaved= 4 IEnMin= 4 EnMin= -152.878733235554 IErMin= 4 ErrMin= 1.83D-03 ErrMax= 1.83D-03 0.00D+00 EMaxC= 1.00D-01 BMatC= 2.22D-04 BMatP= 5.57D-04 IDIUse=3 WtCom= 9.82D-01 WtEn= 1.83D-02 Coeff-Com: 0.206D-01-0.213D-01 0.552D+00 0.448D+00 Coeff-En: 0.000D+00 0.000D+00 0.247D+00 0.753D+00 Coeff: 0.202D-01-0.209D-01 0.547D+00 0.454D+00 Gap= 0.296 Goal= None Shift= 0.000 RMSDP=1.56D-04 MaxDP=2.67D-03 DE=-2.15D-04 OVMax= 3.17D-03 Cycle 5 Pass 0 IDiag 1: E= -152.878887109784 Delta-E= -0.000153874230 Rises=F Damp=F DIIS: error= 2.99D-04 at cycle 5 NSaved= 5. NSaved= 5 IEnMin= 5 EnMin= -152.878887109784 IErMin= 5 ErrMin= 2.99D-04 ErrMax= 2.99D-04 0.00D+00 EMaxC= 1.00D-01 BMatC= 6.73D-06 BMatP= 2.22D-04 IDIUse=3 WtCom= 9.97D-01 WtEn= 2.99D-03 Coeff-Com: 0.477D-02-0.121D-01 0.121D+00 0.173D+00 0.713D+00 Coeff-En: 0.000D+00 0.000D+00 0.000D+00 0.000D+00 0.100D+01 Coeff: 0.475D-02-0.121D-01 0.121D+00 0.173D+00 0.714D+00 Gap= 0.295 Goal= None Shift= 0.000 RMSDP=2.42D-05 MaxDP=4.78D-04 DE=-1.54D-04 OVMax= 5.63D-04 Cycle 6 Pass 0 IDiag 1: E= -152.878891926835 Delta-E= -0.000004817052 Rises=F Damp=F DIIS: error= 7.44D-05 at cycle 6 NSaved= 6. NSaved= 6 IEnMin= 6 EnMin= -152.878891926835 IErMin= 6 ErrMin= 7.44D-05 ErrMax= 7.44D-05 0.00D+00 EMaxC= 1.00D-01 BMatC= 1.92D-07 BMatP= 6.73D-06 IDIUse=1 WtCom= 1.00D+00 WtEn= 0.00D+00 Coeff-Com: 0.108D-02-0.164D-02 0.900D-02 0.984D-02 0.681D-01 0.914D+00 Coeff: 0.108D-02-0.164D-02 0.900D-02 0.984D-02 0.681D-01 0.914D+00 Gap= 0.296 Goal= None Shift= 0.000 RMSDP=4.63D-06 MaxDP=8.14D-05 DE=-4.82D-06 OVMax= 1.06D-04 Initial convergence to 1.0D-05 achieved. Increase integral accuracy. Cycle 7 Pass 1 IDiag 1: E= -152.878894549352 Delta-E= -0.000002622517 Rises=F Damp=F DIIS: error= 5.99D-06 at cycle 1 NSaved= 1. NSaved= 1 IEnMin= 1 EnMin= -152.878894549352 IErMin= 1 ErrMin= 5.99D-06 ErrMax= 5.99D-06 0.00D+00 EMaxC= 1.00D-01 BMatC= 1.09D-09 BMatP= 1.09D-09 IDIUse=1 WtCom= 1.00D+00 WtEn= 0.00D+00 Coeff-Com: 0.100D+01 Coeff: 0.100D+01 Gap= 0.296 Goal= None Shift= 0.000 RMSDP=4.63D-06 MaxDP=8.14D-05 DE=-2.62D-06 OVMax= 2.45D-05 Cycle 8 Pass 1 IDiag 1: E= -152.878894548703 Delta-E= 0.000000000649 Rises=F Damp=F DIIS: error= 7.83D-06 at cycle 2 NSaved= 2. NSaved= 2 IEnMin= 1 EnMin= -152.878894549352 IErMin= 1 ErrMin= 5.99D-06 ErrMax= 7.83D-06 0.00D+00 EMaxC= 1.00D-01 BMatC= 2.43D-09 BMatP= 1.09D-09 IDIUse=1 WtCom= 1.00D+00 WtEn= 0.00D+00 Coeff-Com: 0.602D+00 0.398D+00 Coeff: 0.602D+00 0.398D+00 Gap= 0.296 Goal= None Shift= 0.000 RMSDP=4.83D-07 MaxDP=9.75D-06 DE= 6.49D-10 OVMax= 1.11D-05 Cycle 9 Pass 1 IDiag 1: E= -152.878894550440 Delta-E= -0.000000001737 Rises=F Damp=F DIIS: error= 3.39D-07 at cycle 3 NSaved= 3. NSaved= 3 IEnMin= 3 EnMin= -152.878894550440 IErMin= 3 ErrMin= 3.39D-07 ErrMax= 3.39D-07 0.00D+00 EMaxC= 1.00D-01 BMatC= 5.39D-12 BMatP= 1.09D-09 IDIUse=1 WtCom= 1.00D+00 WtEn= 0.00D+00 Coeff-Com: 0.633D-01 0.613D-01 0.875D+00 Coeff: 0.633D-01 0.613D-01 0.875D+00 Gap= 0.296 Goal= None Shift= 0.000 RMSDP=6.94D-08 MaxDP=1.09D-06 DE=-1.74D-09 OVMax= 8.59D-07 Cycle 10 Pass 1 IDiag 1: E= -152.878894550445 Delta-E= -0.000000000005 Rises=F Damp=F DIIS: error= 1.37D-07 at cycle 4 NSaved= 4. NSaved= 4 IEnMin= 4 EnMin= -152.878894550445 IErMin= 4 ErrMin= 1.37D-07 ErrMax= 1.37D-07 0.00D+00 EMaxC= 1.00D-01 BMatC= 1.02D-12 BMatP= 5.39D-12 IDIUse=1 WtCom= 1.00D+00 WtEn= 0.00D+00 Coeff-Com: -0.139D-01-0.254D-02 0.292D+00 0.724D+00 Coeff: -0.139D-01-0.254D-02 0.292D+00 0.724D+00 Gap= 0.296 Goal= None Shift= 0.000 RMSDP=1.99D-08 MaxDP=2.54D-07 DE=-4.66D-12 OVMax= 3.22D-07 Cycle 11 Pass 1 IDiag 1: E= -152.878894550445 Delta-E= -0.000000000000 Rises=F Damp=F DIIS: error= 8.69D-08 at cycle 5 NSaved= 5. NSaved= 5 IEnMin= 5 EnMin= -152.878894550445 IErMin= 5 ErrMin= 8.69D-08 ErrMax= 8.69D-08 0.00D+00 EMaxC= 1.00D-01 BMatC= 4.56D-13 BMatP= 1.02D-12 IDIUse=1 WtCom= 1.00D+00 WtEn= 0.00D+00 Coeff-Com: -0.103D-01-0.385D-02 0.116D+00 0.455D+00 0.444D+00 Coeff: -0.103D-01-0.385D-02 0.116D+00 0.455D+00 0.444D+00 Gap= 0.296 Goal= None Shift= 0.000 RMSDP=6.58D-09 MaxDP=1.26D-07 DE=-3.13D-13 OVMax= 1.46D-07 SCF Done: E(RB3LYP) = -152.878894550 A.U. after 11 cycles NFock= 11 Conv=0.66D-08 -V/T= 2.0093 KE= 1.514731736797D+02 PE=-4.339389047194D+02 EE= 9.293052597946D+01 Leave Link 502 at Tue Mar 10 15:04:58 2020, MaxMem= 2097152000 cpu: 8.7 elap: 1.2
Selected information on the optimized Kohn-Sham orbitals connected to the B3LYP energy calculation is printed along with a Mulliken population analysis in link 601. For all MOs of the system the program lists the irreducible representations (A' or A'' for a Cs symmetric system), the MO energies (in Hartree), and the overal state symmetry of the system.
(Enter /scr1/g16_a.03_sse4/g16/l601.exe) Copying SCF densities to generalized density rwf, IOpCl= 0 IROHF=0. ********************************************************************** Population analysis using the SCF density. ********************************************************************** Orbital symmetries: Occupied (A') (A') (A') (A') (A") (A') (A') (A') (A') (A") Virtual (A') (A') (A") (A') (A') (A") (A') (A') (A") (A') (A') (A') (A") (A') (A') (A') (A") (A') (A') (A") (A') (A') (A') (A') (A") (A') (A") (A') (A") (A') (A') (A") (A') (A') (A") (A') (A") (A') (A") (A") (A') (A') (A') (A') (A") (A') (A') (A') The electronic state is 1-A'. Alpha occ. eigenvalues -- -19.19882 -19.13583 -1.05110 -0.98861 -0.56968 Alpha occ. eigenvalues -- -0.51472 -0.42850 -0.36657 -0.34633 -0.29195 Alpha virt. eigenvalues -- 0.00366 0.06676 0.09711 0.12864 0.15529 Alpha virt. eigenvalues -- 0.16356 0.18380 0.20735 0.21948 0.26400 Alpha virt. eigenvalues -- 0.28241 0.31585 0.88445 0.94996 0.99141 Alpha virt. eigenvalues -- 1.05615 1.06550 1.10626 1.11725 1.14415 Alpha virt. eigenvalues -- 1.15069 1.16650 1.30301 1.41085 1.47485 Alpha virt. eigenvalues -- 1.50740 1.54225 1.57983 1.66565 1.79210 Alpha virt. eigenvalues -- 2.19808 2.21325 2.27578 2.36224 2.47575 Alpha virt. eigenvalues -- 2.55509 2.59683 2.62527 2.66593 2.69147 Alpha virt. eigenvalues -- 3.00484 3.05600 3.30023 3.42109 3.48644 Alpha virt. eigenvalues -- 3.61957 4.00080 4.09560 Condensed to atoms (all electrons): 1 2 3 4 5 6 1 O 8.240928 0.272300 0.273918 -0.025955 0.001285 0.001285 2 H 0.272300 0.338679 -0.021509 -0.013372 -0.000111 -0.000111 3 H 0.273918 -0.021509 0.400209 0.001881 0.000019 0.000019 4 O -0.025955 -0.013372 0.001881 8.232025 0.281673 0.281673 5 H 0.001285 -0.000111 0.000019 0.281673 0.363030 -0.021946 6 H 0.001285 -0.000111 0.000019 0.281673 -0.021946 0.363030 Mulliken charges: 1 1 O -0.763760 2 H 0.424122 3 H 0.345463 4 O -0.757926 5 H 0.376050 6 H 0.376050 Sum of Mulliken charges = -0.00000 Mulliken charges with hydrogens summed into heavy atoms: 1 1 O 0.005825 4 O -0.005825 Electronic spatial extent (au): = 189.2808 Charge= -0.0000 electrons Dipole moment (field-independent basis, Debye): X= -0.0631 Y= -3.0081 Z= 0.0000 Tot= 3.0088 Quadrupole moment (field-independent basis, Debye-Ang): XX= -12.2566 YY= -12.3864 ZZ= -12.2257 XY= -6.8865 XZ= 0.0000 YZ= -0.0000 Traceless Quadrupole moment (field-independent basis, Debye-Ang): XX= 0.0330 YY= -0.0968 ZZ= 0.0639 XY= -6.8865 XZ= 0.0000 YZ= -0.0000 Octapole moment (field-independent basis, Debye-Ang**2): XXX= -1.1136 YYY= -10.8467 ZZZ= 0.0000 XYY= -0.6430 XXY= 1.1412 XXZ= 0.0000 XZZ= 1.1077 YZZ= -6.6414 YYZ= 0.0000 XYZ= -0.0000 Hexadecapole moment (field-independent basis, Debye-Ang**3): XXXX= -15.0069 YYYY= -176.2245 ZZZZ= -14.5663 XXXY= -0.0839 XXXZ= 0.0000 YYYX= -20.4737 YYYZ= -0.0000 ZZZX= 0.0000 ZZZY= -0.0000 XXYY= -28.1148 XXZZ= -4.8761 YYZZ= -29.0117 XXYZ= -0.0000 YYXZ= 0.0000 ZZXY= -0.9830 N-N= 3.665631050975D+01 E-N=-4.339389032051D+02 KE= 1.514731736797D+02 Symmetry A' KE= 1.434256747485D+02 Symmetry A" KE= 8.047498931260D+00 No NMR shielding tensors so no spin-rotation constants. Leave Link 601 at Tue Mar 10 15:04:59 2020, MaxMem= 2097152000 cpu: 1.9 elap: 0.4
For each geometry optimization step, the Berny geometry optimization algorithm requires the calculation of the first derivatives of the energy with respect to all structural coordinates together with an estimate for the respective second derivatives. All of this is done in the L70x links.
(Enter /scr1/g16_a.03_sse4/g16/l701.exe) ... and contract with generalized density number 0. Compute integral first derivatives. R6Disp: Adding Grimme-D3 dispersion energy 1st derivatives to the gradient. Leave Link 701 at Tue Mar 10 15:04:59 2020, MaxMem= 2097152000 cpu: 1.5 elap: 0.3 (Enter /scr1/g16_a.03_sse4/g16/l702.exe) L702 exits ... SP integral derivatives will be done elsewhere. Leave Link 702 at Tue Mar 10 15:04:59 2020, MaxMem= 2097152000 cpu: 0.3 elap: 0.1 (Enter /scr1/g16_a.03_sse4/g16/l703.exe) Integral derivatives from FoFJK, PRISM(SPDF). Compute integral first derivatives, UseDBF=F ICtDFT= 0. Calling FoFJK, ICntrl= 2127 FMM=F ISym2X=1 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. FoFJK: IHMeth= 1 ICntrl= 2127 DoSepK=F KAlg= 0 I1Cent= 0 FoldK=F IRaf= 0 NMat= 1 IRICut= 1 DoRegI=T DoRafI=F ISym2E= 1 IDoP0=0 IntGTp=1. FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 800 NFxFlg= 0 DoJE=F BraDBF=F KetDBF=F FulRan=T wScrn= 0.000000 ICntrl= 2127 IOpCl= 0 I1Cent= 0 NGrid= 0 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 Petite list used in FoFCou. Leave Link 703 at Tue Mar 10 15:05:00 2020, MaxMem= 2097152000 cpu: 5.0 elap: 0.8 (Enter /scr1/g16_a.03_sse4/g16/l716.exe) Dipole =-2.48342188D-02-1.18349195D+00 2.22044605D-16 ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 8 0.000091919 0.000000000 0.000035477 2 1 -0.000053993 0.000000000 0.000030728 3 1 -0.000034339 0.000000000 -0.000053753 4 8 -0.000107190 0.000000000 0.000037377 5 1 0.000051802 0.000046852 -0.000024914 6 1 0.000051802 -0.000046852 -0.000024914 ------------------------------------------------------------------- Cartesian Forces: Max 0.000107190 RMS 0.000048028 ----------------------------------------------------------------------------------------------- Internal Coordinate Forces (Hartree/Bohr or radian) Cent Atom N1 Length/X N2 Alpha/Y N3 Beta/Z J ----------------------------------------------------------------------------------------------- 1 O 2 H 1 0.000018( 1) 3 H 1 -0.000018( 2) 2 0.000111( 7) X 2 0.000000( 3) 1 -0.000005( 8) 3 -0.000000( 12) 0 4 O 2 -0.000012( 4) 4 -0.000005( 9) 1 -0.000000( 13) 0 5 H 5 -0.000072( 5) 2 -0.000008( 10) 4 0.000031( 14) 0 6 H 5 -0.000072( 6) 2 -0.000008( 11) 4 -0.000031( 15) 0 ----------------------------------------------------------------------------------------------- Internal Forces: Max 0.000111324 RMS 0.000041269 Force constants in Cartesian coordinates: 1 2 3 4 5 1 0.656033D+00 2 0.000000D+00 0.290543D+00 3 -0.852348D-01 0.000000D+00 0.612850D+00 4 -0.171639D+00 0.000000D+00 -0.459258D-01 0.221819D+00 5 0.000000D+00 -0.489042D+00 0.000000D+00 0.000000D+00 0.845200D+00 6 -0.451801D-02 0.000000D+00 -0.527284D+00 0.161380D-02 0.000000D+00 7 -0.521728D+00 0.000000D+00 0.131161D+00 0.130823D-01 0.000000D+00 8 0.000000D+00 0.297362D-01 0.000000D+00 0.000000D+00 -0.524152D-01 9 0.852348D-01 0.000000D+00 -0.855655D-01 0.459258D-01 0.000000D+00 10 0.373348D-01 0.000000D+00 0.000000D+00 -0.657877D-01 0.000000D+00 11 0.000000D+00 0.174993D+00 0.000000D+00 0.000000D+00 -0.326772D+00 12 0.451801D-02 0.000000D+00 0.000000D+00 -0.248455D-01 0.000000D+00 13 0.000000D+00 0.527072D-02 0.000000D+00 0.126279D-02 -0.637409D-02 14 0.000000D+00 -0.311487D-02 0.000000D+00 0.380328D-02 0.115146D-01 15 0.000000D+00 0.637827D-03 0.000000D+00 0.116158D-01 0.187497D-01 16 0.000000D+00 -0.527072D-02 0.000000D+00 0.126279D-02 0.637409D-02 17 0.000000D+00 -0.311487D-02 0.000000D+00 -0.380328D-02 0.115146D-01 18 0.000000D+00 -0.637827D-03 0.000000D+00 0.116158D-01 -0.187497D-01 6 7 8 9 10 6 0.576859D+00 7 0.000000D+00 0.508646D+00 8 0.000000D+00 0.000000D+00 0.450434D-02 9 0.000000D+00 -0.131161D+00 0.000000D+00 0.855655D-01 10 0.259858D-02 0.000000D+00 0.000000D+00 0.000000D+00 0.405393D+00 11 0.000000D+00 0.000000D+00 0.181746D-01 0.000000D+00 0.000000D+00 12 -0.523863D-01 0.000000D+00 0.000000D+00 0.000000D+00 -0.202055D+00 13 0.152815D-03 0.000000D+00 0.000000D+00 0.000000D+00 -0.188470D+00 14 0.460248D-03 0.000000D+00 0.000000D+00 0.000000D+00 -0.186477D+00 15 0.140567D-02 0.000000D+00 0.000000D+00 0.000000D+00 0.997282D-01 16 0.152815D-03 0.000000D+00 0.000000D+00 0.000000D+00 -0.188470D+00 17 -0.460248D-03 0.000000D+00 0.000000D+00 0.000000D+00 0.186477D+00 18 0.140567D-02 0.000000D+00 0.000000D+00 0.000000D+00 0.997282D-01 11 12 13 14 15 11 0.853505D+00 12 0.000000D+00 0.284259D+00 13 -0.221039D+00 0.111191D+00 0.164743D+00 14 -0.359950D+00 0.981421D-01 0.202408D+00 0.368961D+00 15 0.103402D+00 -0.115936D+00 -0.977897D-01 -0.110696D+00 0.105882D+00 16 0.221039D+00 0.111191D+00 0.224644D-01 -0.197345D-01 -0.135544D-01 17 -0.359950D+00 -0.981421D-01 0.197345D-01 -0.174104D-01 -0.120938D-01 18 -0.103402D+00 -0.115936D+00 -0.135544D-01 0.120938D-01 0.864841D-02 16 17 18 16 0.164743D+00 17 -0.202408D+00 0.368961D+00 18 -0.977897D-01 0.110696D+00 0.105882D+00 Force constants in internal coordinates: 1 2 3 4 5 1 0.527284D+00 2 0.000000D+00 0.546008D+00 3 0.000000D+00 0.000000D+00 0.000000D+00 4 0.000000D+00 0.000000D+00 0.000000D+00 0.499264D-01 5 0.000000D+00 0.000000D+00 0.000000D+00 0.000000D+00 0.542235D+00 6 0.000000D+00 0.000000D+00 0.000000D+00 0.000000D+00 0.000000D+00 7 0.000000D+00 0.000000D+00 0.000000D+00 0.000000D+00 0.000000D+00 8 0.000000D+00 0.000000D+00 0.000000D+00 0.000000D+00 0.000000D+00 9 0.000000D+00 0.000000D+00 0.000000D+00 0.000000D+00 0.000000D+00 10 0.000000D+00 0.000000D+00 0.000000D+00 0.000000D+00 0.000000D+00 11 0.000000D+00 0.000000D+00 0.000000D+00 0.000000D+00 0.000000D+00 12 0.000000D+00 0.000000D+00 0.000000D+00 0.000000D+00 0.000000D+00 13 0.000000D+00 0.000000D+00 0.000000D+00 0.000000D+00 0.000000D+00 14 0.000000D+00 0.000000D+00 0.000000D+00 0.000000D+00 0.000000D+00 15 0.000000D+00 0.000000D+00 0.000000D+00 0.000000D+00 0.000000D+00 6 7 8 9 10 6 0.542235D+00 7 0.000000D+00 0.160000D+00 8 0.000000D+00 0.000000D+00 0.250000D+00 9 0.000000D+00 0.000000D+00 0.250000D+00 0.250000D+00 10 0.000000D+00 0.000000D+00 0.000000D+00 0.000000D+00 0.206886D+00 11 0.000000D+00 0.000000D+00 0.000000D+00 0.000000D+00 0.468864D-01 12 0.000000D+00 0.000000D+00 0.000000D+00 0.000000D+00 0.000000D+00 13 0.000000D+00 0.000000D+00 0.000000D+00 0.000000D+00 0.000000D+00 14 0.000000D+00 0.000000D+00 -0.207972D-05 -0.207972D-05 -0.667996D-01 15 0.000000D+00 0.000000D+00 0.207972D-05 0.207972D-05 0.667996D-01 11 12 13 14 15 11 0.206886D+00 12 0.000000D+00 0.138289D-01 13 0.000000D+00 0.114276D+00 0.126305D+01 14 -0.667996D-01 0.000000D+00 -0.191448D-01 0.100831D+00 15 0.667996D-01 0.000000D+00 -0.191448D-01 -0.985306D-01 0.100831D+00 Leave Link 716 at Tue Mar 10 15:05:00 2020, MaxMem= 2097152000 cpu: 0.6 elap: 0.1
The program then jumps back to the actual geometry optimizer in link L103, which lists the actual gradients for all optimization parameters in the "-DE/DX" column together with structural parameters with a reduced energy gradient. The optimization variable "r2", for example, is predicted to have a slightly longer value listed in the "New X" column as 1.83912. This value is given in atomic units, which for distance parameters equates to the Bohr unit (or 0.529177209 Angstroms). A distance of 1.83912 Bohr thus equates to 0.973218 Angstroms. A the end of this ouptut block we find a short summary of the current status of the geometry optimization, listing largest and average (that is room mean square, RMS) gradients for the system under study as well as maximum and RMS displacements of the structural coordinates.
(Enter /scr1/g16_a.03_sse4/g16/l103.exe) GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Search for a local minimum. Step number 1 out of a maximum of 20 All quantities printed in internal units (Hartrees-Bohrs-Radians) Second derivative matrix not updated -- first step. The second derivative matrix: r2 r3 r5 r6 a3 r2 0.52728 r3 -0.00000 0.54601 r5 -0.00000 -0.00000 0.04993 r6 0.00000 -0.00000 -0.00000 1.08447 a3 0.00000 -0.00000 -0.00000 0.00000 0.16000 a5 -0.00000 0.00000 0.00000 -0.00000 -0.00000 a6 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000 d6 -0.00000 -0.00000 0.00000 0.00000 -0.00000 a5 a6 d6 a5 0.25000 a6 -0.00000 0.50755 d6 -0.00000 -0.26720 0.39872 ITU= 0 Eigenvalues --- 0.04993 0.16000 0.18045 0.25000 0.52728 Eigenvalues --- 0.54601 0.72582 1.08447 RFO step: Lambda=-1.11986526D-07 EMin= 4.99264159D-02 Linear search not attempted -- first point. Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) r2 1.83908 0.00002 0.00000 0.00003 0.00003 1.83912 r3 1.82188 -0.00002 0.00000 -0.00003 -0.00003 1.82185 r5 3.61467 -0.00001 0.00000 -0.00024 -0.00024 3.61443 r6 1.82529 -0.00014 0.00000 -0.00013 -0.00013 1.82515 a3 1.84830 0.00011 0.00000 0.00070 0.00070 1.84900 a5 1.45037 -0.00000 0.00000 -0.00002 -0.00002 1.45035 a6 1.95651 -0.00002 0.00000 0.00008 0.00008 1.95659 d6 1.04022 0.00006 0.00000 0.00021 0.00021 1.04042 Item Value Threshold Converged? Maximum Force 0.000144 0.000045 NO RMS Force 0.000069 0.000030 NO Maximum Displacement 0.000696 0.000180 NO RMS Displacement 0.000276 0.000120 NO Predicted change in Energy=-5.599326D-08 Lowest energy point so far. Saving SCF results. GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Leave Link 103 at Tue Mar 10 15:05:00 2020, MaxMem= 2097152000 cpu: 0.7 elap: 0.1
The program then loops as many times as needed through links L202, L502, and L70x, and L103 to search for a geometry with lower energy gradients (output not shown here). Eventually, all four convergence criteria listed by link L103 are fulfilled and the geometry optimization is terminated.
Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) r2 1.83911 -0.00000 0.00001 -0.00001 0.00000 1.83912 r3 1.82181 -0.00000 0.00000 -0.00000 0.00000 1.82181 r5 3.61334 0.00000 -0.00026 0.00013 -0.00013 3.61321 r6 1.82513 -0.00000 0.00000 -0.00000 -0.00000 1.82513 a3 1.84913 -0.00000 -0.00001 0.00001 0.00000 1.84914 a5 1.45013 -0.00000 -0.00007 0.00000 -0.00007 1.45007 a6 1.95712 0.00001 0.00017 0.00001 0.00018 1.95730 d6 1.04084 0.00000 0.00012 0.00001 0.00013 1.04097 Item Value Threshold Converged? Maximum Force 0.000012 0.000045 YES RMS Force 0.000005 0.000030 YES Maximum Displacement 0.000179 0.000180 YES RMS Displacement 0.000094 0.000120 YES Predicted change in Energy=-1.261591D-09 Optimization completed. -- Stationary point found. ---------------------------- ! Optimized Parameters ! ! (Angstroms and Degrees) ! ---------------------- ---------------------- ! Name Value Derivative information (Atomic Units) ! ------------------------------------------------------------------------ ! r2 0.9732 -DE/DX = 0.0 ! ! r3 0.9641 -DE/DX = 0.0 ! ! r5 1.9121 -DE/DX = 0.0 ! ! r6 0.9658 -DE/DX = 0.0 ! ! a3 105.9476 -DE/DX = 0.0 ! ! a5 83.0865 -DE/DX = 0.0 ! ! a6 112.1349 -DE/DX = 0.0 ! ! d6 59.6357 -DE/DX = 0.0 ! ------------------------------------------------------------------------ Lowest energy point so far. Saving SCF results. Largest change from initial coordinates is atom 3 0.001 Angstoms. GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Leave Link 103 at Tue Mar 10 15:05:09 2020, MaxMem= 2097152000 cpu: 0.1 elap: 0.0
For the last (optimized) geometry the program then lists wavefunction characteristics and population analysis data before finishing off in an orderly manner with link L9999 by printing a compact archive entry. This latter block of text includes the optimized geometry, the symmetry of the system (here PG=CS), and the electronic energy (here stated as HF=-152.8788946).
(Enter /scr1/g16_a.03_sse4/g16/l9999.exe) Test job not archived. 1\1\GINC-R1\FOpt\RB3LYP\6-31+G(d,p)\H4O2\ZIPSE\10-Mar-2020\1\\#p b3lyp /6-31+G(d,p) opt=(Z-Matrix) iop(1/7=30) int=ultrafine EmpiricalDispers ion=GD3\\watdim01 water dimer, B3LYP-D3/6-31+G(d,p) opt tight, Cs, int =ultrafine\\0,1\O\H,1,r2\H,1,r3,2,a3\X,2,1.,1,90.,3,180.,0\O,2,r5,4,a5 ,1,180.,0\H,5,r6,2,a6,4,d6,0\H,5,r6,2,a6,4,-d6,0\\r2=0.97321674\r3=0.9 6405809\r5=1.91209922\r6=0.96581912\a3=105.94759891\a5=83.08653053\a6= 112.13493757\d6=59.63571409\\Version=ES64L-G16RevA.03\State=1-A'\HF=-1 52.8788946\RMSD=7.843e-09\RMSF=2.439e-06\Dipole=-0.0691062,0.,1.182161 4\Quadrupole=0.833649,0.045629,-0.8792779,0.,-5.0461332,0.\PG=CS [SG(H 2O2),X(H2)]\\@ The most important thing in communication is to hear what isn't being said. -- Peter F. Drucker Job cpu time: 0 days 0 hours 1 minutes 32.7 seconds. Elapsed time: 0 days 0 hours 0 minutes 13.2 seconds. File lengths (MBytes): RWF= 6 Int= 0 D2E= 0 Chk= 1 Scr= 1 Normal termination of Gaussian 16 at Tue Mar 10 15:05:09 2020.