G3-RAD theory - G3(B3) for open shell systems

G3-RAD is a variant of G3B3 theory optimized for open shell systems. The most important changes concern the use of URCCSD(T) instead of UQCISD(T) single point calculations and the replacement of all UMPx by restricted open shell ROMPx single point calculations. The G3-RAD energy at 0 degree Kelvin E0(G3-RAD) is defined as:

E0(G3-RAD) = E[URCCSD(T)/6-31G(d)//UB3LYP/6-31G(d)]
        + DE(+)
        + DE(2df,p)
        + DE(G3large)
        + DE(HLC)
        + ZPE
        + DE(SO)

The definition of the components being:

DE(+) = E[ROMP4(FC)/6-31+G(d)//UB3LYP/6-31G(d)] - E[ROMP4(FC)/6-31G(d)//UB3LYP/6-31G(d)]

DE(2df,p) = E[ROMP4(FC)/6-31G(2df,p)//UB3LYP/6-31G(d)] - E[ROMP4(FC)/6-31G(d)//UB3LYP/6-31G(d)]

DE(G3large) = E[ROMP2(FULL)/G3large//UB3LYP/6-31G(d)] - E[ROMP2(FC)/6-31G(2df,p)//UB3LYP/6-31G(d)]
                         - E[ROMP2(FC)/6-31+G(d)//UB3LYP/6-31G(d)] + E[ROMP2(FC)/6-31G(d)//UB3LYP/6-31G(d)]

DE(HLC) = -An(beta) - B(n(alpha) - n(beta))
                     A = 6.884 mHartrees; B = 2.747 mHartrees (for molecules)
                     A = 6.561 mHartrees; B = 1.341 mHartrees (for atoms)
                     n(alpha) = No. of alpha valence electrons
                     n(beta) = No. of beta valence electrons

ZPE = 0.9806 * ZPE[UB3LYP/6-31G(d)]

The necessary energies can be calculated most efficiently in the following sequence:

Comments:

Literature: